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Fluid displacement between two parallel plates:
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We consider miscible displacement between parallel plates in the absence of diffusion,
with a concentration-dependent viscosity. By selecting a piecewise viscosity function,
this can also be considered as ‘three-fluid’ flow in the same geometry. Assuming
symmetry across the gap and based on the lubrication (‘equilibrium’) approximation,
a description in terms of two quasi-linear hyperbolic equations is obtained. We find
that the system is hyperbolic and can be solved analytically, when the mobility profile
is monotonic, or when the mobility of the middle phase is smaller than its neighbours.
When the mobility of the middle phase is larger, a change of type is displayed, an
elliptic region developing in the composition space. Numerical solutions of Riemann
problems of the hyperbolic system spanning the elliptic region, with small diffusion
added, show good agreement with the analytical outside, but an unstable behaviour
inside the elliptic region. In these problems, the elliptic region arises precisely at the
displacement front. Crossing the elliptic region requires the solution of essentially
an eigenvalue problem of the full higher-dimensional model, obtained here using
lattice BGK simulations. The hyperbolic-to-elliptic change-of-type reflects the failing
of the lubrication approximation, underlying the quasi-linear hyperbolic formalism, to
describe the problem uniformly. The obtained solution is analogous to non-classical
shocks recently suggested in problems with change of type.

1. Introduction
Moving fronts are encountered in many processes in science and engineering.

Often, the problems involve geometries where the length scale in the direction of
the displacement x is much larger than in the other two directions, y, z (large
aspect ratio). Then, the front moves along the x-direction, but in general has a
three-dimensional structure. Typically, fronts are driven from a contrast in properties
between the two far-field states (the ‘upstream’ and the ‘downstream’ state), that
renders unstable states uniform in the (y, z)-coordinates. Fronts reflect a balance
between externally forced instability and fine-scale dissipation, and in many aspects
they denote self-similar asymptotic states (Barenblatt 1996). For example, this is the
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case with fluid displacements in constricted geometries, or in porous media, in the flow
of suspensions, in combustion, and in a number of other applications (Batchelor &
Janse van Rensburg 1985; Pelcé 1988; Lake 1989; Aldushin & Matkowsky 1998).

In many situations, it is common to seek an upscaled (large-scale) formulation,
where the displacement is expressed in terms of averaged quantities. Because of its
travelling-wave nature, the resulting formulation is typically in terms of a quasi-linear
hyperbolic system,

∂C
∂t

+
∂ F(C)

∂x
= 0, (1)

where C is an averaged concentration (in general, a vector of size N ), F is an averaged
flux (or ‘fractional flow’) function (a vector of size N ) and t and x are appropriately
rescaled time and distance, respectively. For example, in the flow of three phases in a
porous medium, C = {C1, C2}, where Ci is the volumetric fraction of phase i . A large
number of well-known processes are described by quasi-linear hyperbolic systems.
From a long list, we cite classical applications in gas dynamics (Courant & Friedrichs
1948), non-classical extensions to the flow of van der Waals gases (Truskinovsky 1987;
LeFloch 2002), real materials (Menikoff & Plohr 1989) and elastodynamics (Shearer &
Yang 1995).

Deriving the functional dependence of F(C) in (1), or in other quasi-linear
formalisms, is based on the following argument. The quasi-linear system must also
apply to the case of a uniform (‘equilibrium’) state, for example the steady-state, where
the variables are independent of t and x. Under these conditions, a corresponding
‘equilibrium’ fractional flow function, denoted as Fpf (C) (corresponding to parallel
flow in our case of interest), can be derived. Then, for self-consistency, we must make
in (1) the identification

F(C) = Fpf (C). (2)

This approach underlies the formulation of various quasi-linear hyperbolic systems.
For example, in the case of van der Waals gases (Truskinovsky 1987; LeFloch 2002;
and references therein), the equilibrium assumption is the van der Waals equation of
state. In the problem of elastodynamics (Shearer & Yang 1995), it is the equilibrium
(quasi-static) stress–strain relation. In flow in porous media, it is the quasi-static
representation of flow using steady-state relative permeabilities (Lake 1989). In the
context of the present paper, therefore, the ‘equilibrium’ state corresponds to pressure
profiles independent of the transverse direction, and was denoted by Yang & Yortsos
(1997, referred to hereinafter as YY), as the ‘parallel flow’ approximation.

Quasi-linear hyperbolic systems often display a change of type, namely the
development of an elliptic region. Because of their mathematical interest, these
mixed hyperbolic–elliptic problems have been studied at length in the literature
(Bell, Trangenstein & Shubin 1986; Keyfitz 1989; Shearer & Trangenstein 1989;
Isaacson, Marchesin & Plohr 1990; Jackson & Blunt 2002; Juanes & Patzek 2003).
Batchelor & van Rensburg (1985) derived the analogue of (1) in the context of
sedimentation of bi-disperse suspensions, where the state variables are the volumetric
fractions of the two different-size particles, and the flux functions depend only on the
two volumetric fractions. The authors showed that uniform states within the elliptic
region are unstable, and used the change of type in order to classify stable and
unstable suspension flows. An analogous approach was used by Bell et al. (1986) in
three-phase flow in porous media.

Stable solutions in a mixed-type problem can develop through the addition of
sufficiently strong regularizing diffusion (or viscosity, in the context of gas dynamics),
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so that the solution path avoids the elliptic region (see below and also Jackson & Blunt
2002). However, instability will persist when diffusion is small, as in the present paper.
In general, the change of type cannot be handled analytically based on (1) alone,
and various alternative methods have been proposed (e.g. Bell et al. 1986; Keyfitz
1989). Recent works have shown that in crossing the elliptic region, classical shocks,
namely those based on the addition of small diffusion, cannot resolve the problem.
Rather, additional physics must be included in the shock region, e.g. through terms
of higher-order than diffusion, for example an effective capillarity (LeFloch 2002).
These result in additional constraints, leading to non-classical shocks (LeFloch 2002).
Progress has been hampered because often, models displaying change of type have
been based on empirical flux functions. In fact, some authors have argued that the
existence of a mixed-type region should be used as a criterion to reject the empirical
model on which it is based, and to replace it by another (also empirical), for which an
elliptic region does not develop (Fayers & Matthews 1984; Juanes & Patzek 2003). A
more rigorous physical model will help to elucidate these issues. We will show below
that such a model can indeed be obtained by considering fluid displacement in the
gap of a Hele-Shaw cell (or equivalently, in a long capillary, although this will not be
discussed here). This forms one of the objectives of this paper.

Past investigations on flows in Hele-Shaw geometries include the seminal works of
Park & Homsy (1984) and Reinelt & Saffman (1985) for immiscible displacement,
and Petitjeans & Maxworthy (1996), Chen & Meiburg (1996), Rakotomalala, Salin &
Watzky (1997), Lajeunesse et al. (1999) and Yang & Yortsos (1997) for miscible
displacement. The latter authors used an asymptotic formalism, based on the
lubrication approximation and in the absence of diffusion, to describe an equivalent
‘two-fluid’ problem between two parallel plates. We used quotation marks above to
indicate that in this approach no capillary forces are involved, and the problem solved
is kinematic. The injected fluid (local dimensionless concentration c = 1, viscosity µ1)
was taken as one of the two fluids, the initial fluid (local dimensionless concentration
c = 0, viscosity µ0) being the other. In the absence of diffusion, the fluids do not mix,
thus retaining their identity. Under the further assumptions that the resulting profile
is symmetric and that the flow is uni-directional, YY derived a hyperbolic equation

for the transverse-averaged concentration C ≡
∫ 1

0
c dy, reading as

∂C

∂t
+

∂F (C)

∂x
= 0, (3)

where, the fractional flow function is exact,

F (C) =
C[3 + (2M − 3)C2]

2[1 + (M − 1)C3]
, (4)

and depends only on the dimensionless mobility ratio M ≡ µ0/µ1 between initial and
injected viscosities (inverse mobilities).

YY solved a Riemann problem with initial state C =0 and injection state C = 1.
When M < 3/2, the function F (C) does not contain an inflection point, it is convex
downwards, and the solution is a rarefaction wave, with the tip velocity (the velocity
of the concentration C = 0) being the maximum velocity of the Poiseuille profile
(equal to 3/2 in the present notation). The accuracy of the solution was confirmed
by lattice BGK (Bhatnagar–Gross–Krook) numerical simulations (Rakotomalala
et al. 1997), which solve the full problem without making the potentially restrictive
parallel-flow approximation. On the other hand, when M > 3/2, the fractional flow
function contains an inflection point. The solution of the same Riemann problem
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Figure 1. Schematic of the flow geometry for displacement in the gap of a Hele-Shaw cell.

involves now a contact discontinuity shock that precedes the spreading wave, with
a shock velocity that exceeds the Poiseuille maximum and increases monotonically
with the mobility ratio M . Under these conditions, the same numerical simulations
(see also Chen & Meiburg 1996) showed a discrepancy with the classical analysis,
however, in that the front actually moves slower than predicted by the hyperbolic
formalism, while its velocity becomes bounded at large M .

In retrospect, it is not surprising that the two solutions are different. In the vicinity
of a shock, where transverse flow is significant, the parallel-flow formalism breaks
down. Determining the correct front velocity there requires finding the eigenvalue of
the full higher-dimensional problem. Viewed in a different context, it appears that
the shock in YY belongs to the class of non-classical shocks. In a way, this is akin
to the solvability question of the Saffman–Taylor problem (Saffman & Taylor 1958;
Pelcé 1988). An analytic determination of this problem, here in the context of the
biharmonic, rather than the Laplace equation, remains open at present.

Motivated by the above, we will consider in this paper extending the YY approach
to ‘three-fluid’ flow in the same geometry (figure 1). For this, we will take a
piecewise mobility–concentration function, so that constant mobilities (or viscosities)
are assigned to three different concentration (or fluid) regions, e.g. M in ca < c < 1,
Λm in cb < c < ca , and 1 in 0 <c <cb, and consider the evolution of the boundaries
that separate these regions of constant mobility. As in YY, we will use the Stokes
equations and the parallel-flow approximation in a symmetric profile across the
gap. As we noted above, this assumption is necessary for self-consistency of the
quasi-linear formalism and represents the equivalent of the equilibrium assumption,
e.g. in gas dynamics. With these assumptions, we will show that the evolution of
the corresponding volume fractions is described by a system of two quasi-linear
hyperbolic equations, the classical solution of which is obtained by standard tools
(Whitham 1976). More importantly, we will show that for a certain combination of
parameters, the problem changes type and develops an elliptic region. The paper
elaborates on the development and the analysis of corresponding Riemann problems,
and provides a comparison with standard approaches. Crossing the elliptic region
is addressed by solving the full higher-dimensional problem, using the lattice BGK
method. Thus, based on an exact model in the absence of empiricism, but using
specific assumptions, this paper presents evidence that change-of-type behaviour can
indeed arise from real physical situations, but resolving it necessitates incorporating
additional physics in the shock that spans the elliptic region, effectively solving an
eigenvalue problem.

The paper is organized as follows. First, we provide the mathematical formulation,
where the conditions for the development of mixed-type behaviour are outlined. Three
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Figure 2. Schematic of the profiles assumed: (a) general phase (finger) boundaries, (b) corres-
ponding mobility profile. The region near the wall has mobility 1, boundaries 0 <y <y1(x, t)
and y4(x, t) <y < 1, and it is denoted by subscript w; the region in-between has mobility Λm,
boundaries y1(x, t) < y < y2(x, t) and y3(x, t) <y <y4(x, t), and it is denoted by subscript o;
and the region in the middle of the domain has mobility M , boundaries y2(x, t) <y <y3(x, t),
and it is denoted by subscript g.

different, generic cases are analysed. Then, two specific Riemann problems are solved
for a representative mobility profile. Numerical results based on the assumption of
parallel flow, but with the presence of a small amount of diffusion, are subsequently
described using lattice BGK simulations and compared to the analytical results. It is
shown that unless diffusion is large, the diffusion-augmented models do not provide
a physical solution in the mixed-type case. There, the full higher-dimensional model
must be simulated. Discussion and conclusions follow.

2. Mathematical formulation
Consider miscible displacement in the gap of a Hele-Shaw cell in the (X, Y )-plane

and in the absence of gravity, as shown in figure 1. The cell, of thickness H , is initially
saturated with a resident fluid (of dimensionless concentration c = 0). Assume that
a fluid with different concentration is injected at the constant rate q to displace
the fluid in place. The viscosity is a function of concentration (monotonic or non-
monotonic). A non-monotonic dependence is necessary for change-of-type behaviour,
as will be shown below. It is worth noting that non-monotonic viscosity profiles
in porous media flows have led to interesting results (e.g. see Manickam & Homsy
1993; Loggia, Rakotomalala & Salin 1999; Shariati 2000). However, the latter used a
volume-averaged version of the problem, based on Darcy rather than Stokes equations.

In general, as the concentration field evolves, we can delineate three fluid regions
(figure 2): a region near the wall, with mobility 1 and boundaries 0 < y < y1(x, t)
and y4(x, t) <y < 1, denoted by subscript w; a region in-between with mobility Λm

and boundaries y1(x, t) <y <y2(x, t) and y3(x, t) < y < y4(x, t), denoted by subscript
o; and a region in the middle of the domain, with mobility M and boundaries
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y2(x, t) <y <y3(x, t), denoted by subscript g. Because of the assumed absence of
diffusion and the ensuing kinematic description, the fluids retain their mobility in
their respective regions. Figure 2 can be viewed as the developed profile in a variable
mobility displacement, where a fluid of mobility M displaces one of initial mobility 1,
between which there is an intermediate fluid of mobility Λm. It also pertains to the
case where two different fluids are injected at the inlet, each occupying a specific part
of the inlet boundary. This coarse analogy will be used below to connect with the
much studied problem of three-phase flow in a porous medium (Isaacson et al. 1990;
Jackson & Blunt 2002; Juanes & Patzek 2003). The corresponding dimensionless
mobility profile is stepwise,

λ = 1 + (Λm − 1)[H (y − y1(x, t) − H (y − y2(x, t))]

+ (M − Λm)[H (y − y3(x, t) − H (y − y4(x, t))], (5)

where H (z) is the Heaviside step function.
In dimensionless notation, the governing equations are

∂c

∂t
+

∂(uc)

∂x
+

∂(wc)

∂y
= NTD

[
ε2 ∂2c

∂x2
+

∂2c

∂y2

]
, (6)

∂u

∂x
+

∂w

∂y
= 0, (7)

where parameter ε = H/L is the aspect ratio, x and y have been scaled with the
length and thickness, L and H , of the cell, respectively, and for completeness we
have retained diffusion, NTD = DL/qH 2, where D is molecular diffusivity. Using the
analysis in YY (see also Shariati & Yortsos 2001), and assuming a large aspect ratio,
the parallel flow (equilibrium) expression for the velocity u is

u =
G(y; λ)∫ 1

0

G dy

, (8)

where the function G is

G(y; λ) ≡
∫ y

0

λ dy

∫ 1

y

λy dy −
∫ y

0

λy dy

∫ 1

y

λ dy. (9)

As expected, in the passive tracer limit λ = 1, we recover the Poiseuille velocity profile
u = 6y(1 − y).

In the absence of diffusion, we can recast the mass balances by multiplying (6) by
λ′, where the prime denotes derivative with respect to c, to obtain

∂λ

∂t
+

∂(λu)

∂x
+

∂(λw)

∂y
= 0. (10)

Using the step mobility profile of (5), we can integrate (10) across the boundaries yi ,
to obtain differential equations for their evolution. It is not difficult to show that the
following equations result

∂yi

∂t
+

∂

∂x

[∫ yi

0

u dy

]
= 0 (i = 1, 4). (11)

These are coupled to each other through the integral term G (equation (9)), from
the parallel-flow approximation. To proceed, we will assume from now on that the
profiles are symmetric across the gap.
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The symmetric case is described by y4(x, t) = 1 − y1(x, t) and y3(x, t) = 1 − y2(x, t),
thus, by a system of two unknowns. For convenience, we will introduce the ‘saturation’
notation, Sw = 2y1, Sg = 1 − 2y2 and So =1 − Sw − Sg , and the ‘fractional flow’ notation,
fw = 2

∫ y1

0
u dy, fg = 1 − 2

∫ y2

0
u dy and fo = 1 − fw − fg , in analogy with the three-

phase flow problem. In terms of these variables, (11) takes the final conservation form

∂Sw

∂t
+

∂

∂x

[
fw(Sw, Sg)

]
=0 (12)

and
∂Sg

∂t
+

∂

∂x

[
fg(Sw, Sg)

]
= 0, (13)

where we have the following explicit expressions for the fractional flow functions

fw =
S2

w(3 − Sw)

2[1 + (Λm − 1)(1 − Sw)3 − (Λm − M)S3
g]

(14)

and

fg =
Sg

[
3 + 3(Λm − 1)(1 − Sw)2 + S2

g(2M − 3Λm)
]

2[1 + (Λm − 1)(1 − Sw)3 − (Λm − M)S3
g]

. (15)

These expressions are exact, in the context of the parallel-flow approximation. The pro-
perties fw(Sw = 0, Sg) = 0, fg(Sw, Sg = 0) = 0, fw(Sw = 1, Sg) = 1 and fg(Sw, Sg = 1) = 1,
and the low saturation scalings, fw ∼ S2

w , fg ∼ Sg and fo ∼ So demonstrate physical
consistency with the three-phase flow analogy stated above. As expected, in the case
Λm = M , the problem reduces to the ‘two-fluid’ flow problem of YY, since (14) is only
a function of Sw (compare with (4) and take C = 1 − Sw).

The derivation of (12)–(15) can also be obtained alternatively, by assuming piecewise
constant concentration profiles in the three regions, postulating mass conservations
for the two fluids and making use of the parallel-flow assumption (e.g. see Lajeunesse
et al. 1999). Potential problems associated with the step or Dirac delta functions used
in our approach will be resolved in shock or elliptic regions, in which additional
physics that regularize the problem, and which are absent from the above, must be
added, as noted above and also discussed below. The above kinematic description
was shown to describe well away from shocks, actual experiments at high rates (see
Lajeunesse et al. 1999).

The set of the two equations (12) and (13) form the quasi-linear system

∂u
∂t

+ A(u)
∂u
∂x

= 0, (16)

where u is the vector of the dependent variables,

u =

[
Sw

Sg

]
(17)

and A the 2 × 2 coefficient matrix

A =

∣∣∣∣q1 q2

q3 q4

∣∣∣∣ (18)

where

q1 =
∂fw

∂Sw

, q2 =
∂fw

∂Sg

,

q3 =
∂fg

∂Sw

, q4 =
∂fg

∂Sg

.
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Figure 3. Composition paths in the triangular composition diagram, for case I, M = 1 and
for various values of Λm (equal to 0.2, 1 and 5, respectively). When Λm < 1, the problem is
hyperbolic. When Λm = 1, the paths are straight lines. When Λm > 1, a region of ellipticity
develops near the GW axis, which increases in size as Λm increases. Point A denotes the
injection state for Riemann problem R1.

The eigenvalues of the matrix

λ± =
(q1 + q4) ±

√
(q1 − q4)2 + 4q2q3

2
(19)

determine the nature of the problem. Two real and distinct eigenvalues define a
genuinely hyperbolic system, in which case the solution of a Riemann problem is
a combination of rarefaction waves and shocks. The first are the integral solutions
of the right eigenvectors of A. Solutions corresponding to eigenvalue λ+ (fast or λ+

paths) are obtained from

dSw

dSg

=
q2

λ+ − q1

, (20)

and solutions corresponding to λ− (slow or λ− paths) from

dSw

dSg

=
λ− − q4

q3

. (21)

Shocks are obtained from the solution of the corresponding Hugoniot conditions,
which for given left and right states (superscripts l and r , respectively) read as

v =
fw

(
Sr

w, Sr
g

)
− fw

(
Sl

w, Sl
g

)
Sr

w − Sl
w

=
fg

(
Sr

w, Sr
g

)
− fg

(
Sl

w, Sl
g

)
Sr

g − Sl
g

, (22)

where v is the shock velocity. However, shocks will violate the parallel-flow
approximation. YY showed that they may also lead to erroneous results or an
undeterminacy, unless additional physics are included, essentially corresponding to
non-classical shocks (LeFloch 2002). For this reason, we will concentrate on Riemann
problems that give rise to rarefaction waves, except when an elliptic region is to be
traversed, which of course is the main interest of this paper.

In the following, we will use a triangular ‘composition’ diagram to represent the
various quantities (figure 3). The quasi-linear formalism allows for the solution of all
dependent variables to be expressed as a function of one of them. Hence, solution
paths can be traced in a two-dimensional space, which for convenience in the present
context we take as a triangular diagram. Axis OG (Sw = 0), where q2 = 0, is a λ+ path,
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axis OW (Sg = 0), where q3 = 0, is a λ− path. Along the latter, the two eigenvalues are
independent of M , and given by the respective expressions

λ± =
3

2

[
1 + (2Λm − 3)S2

o − 2(Λm − 1)S3
o

]
[
1 + (Λm − 1)S3

o

]2
or

3

2

[
1 + (Λm − 1)S2

o

][
1 + (Λm − 1)S3

o

] , (23)

corresponding to λ+ or to λ−, depending on which of the two expressions is greater.
The first is identical to the velocity given in YY. Of importance are umbilic points
and coincidence curves (Keyfitz 1989; Shearer & Trangenstein 1989) defined as the
points or the curves on which the two eigenvalues are equal. Along the various axes,
specific umbilic points exist. For example, on the OW axis, the location of the umbilic
point is given from the solution of the cubic equation

(Λm − 1)2S3
o + 3(Λm − 1)So − (Λm − 2) = 0, (24)

for Λm > 2. Vertices G and W are umbilic points. Examples of coincidence curves will
be given below. The path corresponding to the largest eigenvalue becomes tangent
to the GW axis (So =0). Along this axis, the eigenvalues are independent of Λm and
equal to

λ+ =
3

2

[
1 + (2M − 3)S2

g − 2(M − 1)S3
g

]
[
1 + (M − 1)S3

g

]2
(25)

and

λ− =
3

2

(
1 − S2

g

)
[
1 + (M − 1)S3

g

] , (26)

if M > 1 (and conversely, if M < 1). Expression (25) coincides with the velocity in YY.
When M = 1, both paths become tangent to GW (see below), while the eigenvalues
reduce to the Poiseuille velocity 3(1 − S2

g)/2. The entire axis GW is then a coincidence
curve.

For some combination of parameters, the eigenvalues may become complex
((q1 − q4)

2 + 4q2q3 < 0), in which case the system has a region of elliptic behaviour.
It will be shown below that a non-monotonic mobility profile is necessary for the
development of an elliptic region and a change of type. For convenience, we will
consider three different cases, special limits of which allow for analytical solutions.

3. Mixed-type behaviour
Case I. M = 1 and Λm �= 1

The case M =1, Λm �= 1 is the simplest model of non-monotonic behaviour in the
mobility–concentration function. It also allows for analytical insight. For this we
introduce parameter ε1 ≡ Λm − 1, and expand at small ε1 to obtain

q1 = 3Sw − 3
2
S2

w + O(ε1), q2 = O(ε1), q3 = O(ε1), q4 = 3
2

(
1 − S2

g

)
+ O(ε1). (27)

In the limit ε1 = 0 (Λm =1), matrix A diagonalizes and the problem reduces to the
‘two-fluid’ problem of YY. The eigenvalues λ+ and λ− become sole functions of Sw

and Sg , respectively, while the composition paths become straight lines parallel to the
Sw and Sg axes in the composition diagram (figure 3).

When ε1 �= 0 (Λm �= 1), the eigenvalues become complex in a region, around the axis
GW, which expands with increasing |ε1|. At small |ε1|, this region is bounded by the
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axis GW and the curve

So ≡ U1(Sw) = 2(Λm − 1)(1 − Sw)S2
w(3 − Sw). (28)

Clearly, for the elliptic region to be physically relevant, condition Λm > 1 must apply
(when Λm < 1, the region of ellipticity lies outside the physically meaningful region,
and it is of no physical interest). Physically, this corresponds to the situation of a
concave mobility profile, where a more viscous initial fluid is being displaced by an
intermediate, less viscous fluid, which is itself being displaced by a more viscous fluid.

We infer that the system is hyperbolic, when the mobility profile across the half-gap
is concave downstream, but gives rise to a mixed-type problem when it is convex
downstream. We stress that the development of an elliptic region arises here in
the absence of any empirical assumptions. It is based solely on the parallel flow
(equilibrium) approximation and the non-monotonicity of the mobility profile. This is
to be contrasted, for example, to the three-phase flow problem in porous media where
elliptic regions have often been attributed to incorrectly modelled empirical relative
permeability functions (Juanes & Patzek 2003). We also note that non-monotonicity
in the constitutive equations, e.g. the equation of state in the case of van der Waals
fluid dynamics or the stress–strain relation in the case of elastodynamics, is likewise
the cause of mixed-type behaviour in the corresponding two problems (Truskinovsky
1987; Shearer & Yang 1995).

Solution paths and the region of ellipticity in the triangular diagrams are shown in
figure 3 for M =1 and various values of Λm. As mentioned above, elliptic behaviour
occurs only if Λm > 1, and in a region which expands as Λm increases above 1. The
paths become increasingly curved, as Λm deviates from 1, with a curvature sign which
depends on whether or not Λm is less than or greater than 1. When Λm < 1, the paths
become tangential to the GW axis (at the points where q1 − q4 = 2q2 = −2q3). Near
the point of tangency B, the equation of the path can be approximated by

Sw ≈ 1 − Sg − 1

2(1 − Λm)

[∫ Sg

Sg(B)

dx

(1 − x)
√

x(2 + x)

]2

. (29)

When Λm > 1, the two paths terminate at the boundary of the elliptic region, where
their slopes become equal. Noteworthy is the development of a lobe of genuine
hyperbolicity near the apex W.

Case II. M �= 1 and Λm �=M

A second generic case corresponds to M �=1. Analytical results are possible when
parameter ε2 ≡ Λm − M is small. Now, we have the expansions

q1 = q10(Sw) + O(ε2), q2 = 3ε2S
2
gq21(Sw) + O

(
ε2
2

)
,

q3 = q30(Sw, Sg) + O(ε2), q4 = q40(Sw, Sg) + O(ε2), (30)

where the leading-order terms are

q10(Sw) =
3Sw

2E2

[
2 − Sw + 2(M − 1))(1 − Sw)2

]
, (31)

where E ≡ 1 + (M − 1)(1 − Sw)3, and

q40(Sw, Sg) =
3

2E

[
1 + (M − 1)(1 − Sw)2 − MS2

g

]
. (32)
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In the limit ε2 = 0 (Λm = M), matrix A becomes lower triangular, as q2 = O(ε) → 0.
Then, the eigenvalues are equal to q10 or q40. This case is another version of the
‘two-fluid’ problem discussed in YY.

As Λm deviates from M , an elliptic region develops around the coincidence curve,
given by

Sg ≡ U2(Sw) = (1 − Sw)

√
1 − S2

w(3 − Sw)(M − 1)

M[1 + (M − 1)(1 − Sw)3]
(33)

provided that Λm − M > 0, namely that the profile is non-monotonic (and with the
restriction Λm > 1). To show this, we expand around the coincidence curve for small
ε2 and introduce the expansions given in (30) in the condition of the vanishing of the
discriminant

(q1 − q4)
2 = −4q2q3. (34)

To match the right-hand side of the above, which is O(ε2), the boundary of the elliptic
region must be perturbed in the form

Sg = U2(Sw) +
√

|ε2|φ(Sw) + O(ε2). (35)

Noting that Sg = U2(Sw) is the solution of q10 = q40, provided that M > 1, we then
obtain the following equation for φ(

φ
∂q40

∂Sg

∣∣∣∣
Sg = U2

)2

= −12sgn(ε2)q21S
2
wq30(Sw, U2(Sw)), (36)

where sgn(ε2) ≡ ε2/|ε2|. Now, it can be shown that (Λm − 1)q30(Sw, U2(Sw)) < 0, thus
(36) admits a (two-branch) solution, only if

ε2(Λm − 1) = (Λm − M)(Λm − 1) > 0. (37)

In view of the restriction Λm − 1 > 0, condition (37) is again a condition of non-
monotonicity, thus proving the claim made. The region of ellipticity is bounded by
the two solutions of (36). Its size increases with increasing ε2, but remains within
the physically meaningful space (as shown in figure 4). In contrast, if the profile is
monotonic, an elliptic region does not develop (figure 4), although a coincidence curve
exists. Composition paths and other properties are shown in figure 4.

Case III. M �= 1 and Λm �= 1

The generic case M �= 1 and Λm �=1, is a third case where analytical results are
possible, when parameter ε3 = Λm − 1 is small. The approach is analogous to the
previous and for simplicity will not be repeated. Details can be found in Shariati &
Yortsos (2001). As before, a non-monotonic profile is required for the existence of an
elliptic region.

4. The solution of Riemann problems
We will proceed next with the solution of two illustrative Riemann problems,

one with injection at a point A along the OG axis and initial condition at W
(problem R1) and another with injection at G and initial condition at W (problem
R2). Emphasis will be placed only on case I, which is representative of the other
two cases as well. We will develop analytical results, when possible, and compare
them with numerical solutions of a diffusion-augmented model, and, in a subsequent
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Figure 4. Composition paths in the triangular composition diagram, for case II, and for
various values of M and Λm (equal to (0.5, 0.5), (3, 3), (3, 5) and (5, 3), respectively). When
Λm = M > 1, a coincidence curve exists joining apex G to the axis OW. An elliptic region
develops if Λm > M > 2. Point A denotes the injection state for Riemann problem R1.

section, with the numerical solution of the full, higher-dimensional model. As pointed
out, we have considered Riemann problems such that in the hyperbolic region their
solution is given only by rarefaction waves. Riemann problems can easily be realized
experimentally, by injecting the fluids symmetrically across the gap at fractional flow
values corresponding to the desired values of the inlet volume fractions, as determined
from expressions (14) and (15).

Analytical results are possible in the case of genuine hyperbolicity, or in the hyper-
bolic region of the mixed-type case. Adding diffusion to the model requires a numerical
solution, which can be obtained in two ways: (i) by an ad hoc addition of diffusion on
the right-hand side of the hyperbolic equations (16); (ii) by retaining the diffusivity
NTD in the original system (6)–(9), always subject to the parallel-flow approximation.
Because of its better physical basis, we proceeded using the second approach.

The corresponding numerical problem can be solved by a variety of methods, e.g.
standard finite-difference schemes as in YY (see also Shariati & Yortsos 2001). In
this paper, we elected to use lattice BGK (LBGK) simulations, however. As we noted
above, this lattice gas-related method was successfully used in Rakotomalala et al.
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(1997) to solve the full displacement problem in the monotonic case (the ‘two-fluid’
problem). Having access to this numerical tool, we also used it to provide numerical
solutions to the problem in the presence of diffusion, but under the parallel-flow
approximation, which is the subject of interest of this section. For this purpose, the
convection–diffusion equation for the concentration was not coupled with the Navier–
Stokes or Stokes equations, but with the ‘lubrication’ velocity field. The velocity
component in the mean flow direction is given by the parallel flow expressions (8)–(9)
and the transverse one is obtained from the continuity equation. In all simulations,
the following (dimensionless) viscosity dependence was taken

µ(c) =




M−1 + 1
2

(
Λ−1

m − M−1
)
e(c−0.25)/0.01 if c > 0.75,

Λ−1
m + 1

2

(
M−1 − Λ−1

m

)
e−(c−0.25)/0.01 + 1

2

(
Λ−1

m − 1
)
e(c−0.75)/0.01 if 0.25 < c < 0.75,

1 + 1
2

(
Λ−1

m − 1
)
e−(c−0.75)/0.01 if c < 0.25.

(38)

The step-like dependence is necessary for the clear identification of the three fluid
regions in the present kinematic description.

4.1. Analytical and numerical results

Consider, first, the solution of Riemann problem R1, with state A given by So = 0.75,
Sg = 0.25. Figure 5 shows analytical results for the genuinely hyperbolic case. Plotted
are the solution path in the triangular diagram, the saturations, the fluid boundaries,
and the transversely averaged concentration, defined as c̄ = Sg + So/2, as functions
of the similarity variable x/t . Because the problem is genuinely hyperbolic and the
slow eigenvalue increases monotonically in the direction from injection to initial,
the solution lies on the λ− path AB. This describes first an increasing and then a
decreasing value of Sg , the finger of the fluid in the centre swelling before it sharpens
at the tip. The finger of the in-between fluid continuously decreases and near the tip
reduces to a thin layer of infinitesimal thickness (in this case of zero diffusion) and
reduced mobility. The path encounters the GW axis at point B, at which it becomes
tangential to it, as pointed out above. From then on, the path stays on the GW axis,
where the two eigenvalues are the same. Along this part, the solution for Sg and c̄ is
merely the Poiseuille profile.

Thus, in the genuinely hyperbolic case the overall solution is a rarefaction, the
leading part being the Poiseuille profile with a tip velocity equal to 3/2. These
features are the same as those of the ‘two-fluid’ problem of YY in the case M < 3/2.

Corresponding results from the simulation of the hyperbolic system are shown in
figure 6. The comparison between analytical and numerical results is generally good.
Diffusion in the numerical simulation does spread the rarefaction wave, and causes
the path in the composition space to shift to the left of the W vertex, on the OW
axis, as the layer in-between the two fluids has now a non-zero thickness. Thus, the
initial state is not reached tangentially from the WG axis, as the analytical solution
requires, but rather from the OW axis. This mismatch increases progressively with
time as t1/2, and is enhanced with increasing diffusion. The small deviation at the
tip reflects a numerical artefact in the numerical simulation, as a result of a slightly
different initial condition used in the simulation, when the parallel flow is imposed.

Analytical results for the same problem, but in the case Λm > 1, where a mixed-
type behaviour arises, are shown in figure 7 (Λm = 10). The analytical construction
follows the λ− path AE, and it is a rarefaction wave, until the path approaches the
elliptic region at point E. The path has a curvature opposite to the previous, with Sg
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Figure 5. The analytical solution of Riemann problem R1 (injection at state A, initial
condition at state W), for case I, M = 1 and for Λm = 0.1, corresponding to a rarefaction.
Clockwise from top left are composition paths, saturation profiles, transversely averaged
concentration and phase (finger) boundaries, plotted as functions of the convective similarity
variable x/t . The solid, dotted and dashed curves correspond to the saturation (volume
fraction) of fluids g, o and w, respectively.

decreasing for the most part. Now, swelling at the tip occurs inside the elliptic region,
as is shown in more detail by the full solution below. Connection to the initial state
requires the crossing of the elliptic region with a shock. For further progress, we used
LBGK simulations.

Figure 8 shows results from the simulations, under the assumption of parallel flow
and using small diffusion, as explained above. There is good agreement with the
analytical solution in the hyperbolic region. However, when the solution enters the
elliptic region it becomes unstable, leading to sustained oscillations of a bounded
variation. Figure 9 shows consecutive snapshots of the corresponding concentration
field, where the unphysical instability at the tip is clear (again, the very small needle-
like feature at the tip is a numerical artefact due to a slightly modified initial
condition). The instabilities observed in figures 8 and 9 are consistent with the
instability of the uniform states in the elliptic regions (Batchelor & Janse van Rensburg
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Figure 6. The numerical solution of Riemann problem R1 based on the parallel flow
approximation for the conditions corresponding to figure 5, with NTDε2 = 2.4 × 10−4. Bold
curves correspond to the lattice BGK simulation results, all others to the analytical solution.
Clockwise from top left are composition paths, saturation profiles, transversely averaged
concentration and phase (finger) boundaries, plotted as functions of the convective similarity
variable x/t . The small deviation from the analytical solution at the tip reflects a numerical
artefact in the numerical simulation, as a result of a slightly different initial condition.

1985; Bell et al. 1986; Keyfitz 1989). Diffusion can be stabilizing if it is sufficiently
strong to divert the paths from the elliptic region. This is not the case in figures 8
and 9, where the terminal point of the ‘three-fluid’ region on the OW axis can only
be reached through the elliptic region. Figure 10 shows corresponding simulation
results under the same conditions, but with increased diffusion. Now, the solution
consists of a combination of a ‘three-fluid’ regime described by the above analytical
formalism, with a faster moving ‘two-fluid’ regime along the OW axis, downstream.
The stronger diffusion causes significant departure from the analytical predictions.
The transition between the two regimes occurs through a rarefaction wave along the
path corresponding to the fast eigenvalue. Because the downstream region is essentially
a displacement of a more viscous by a less viscous fluid, however, it leads to a shock-
like (finger-like) structure similar to that in YY for the case M > 3/2. We stress that
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Figure 7. The analytical solution of Riemann problem R1 (injection at state A, initial
condition at state W), for case I, M = 1 and for Λm =10, corresponding to the case with
change-of-type. Clockwise from top left are composition paths, saturation profiles, transversely
averaged concentration and phase (finger) boundaries, plotted as functions of the convective
similarity variable x/t . The rarefaction wave terminates when the elliptic boundary is
encountered.

even though this is a mathematically acceptable solution, it is physically questionable,
given that across such a shock the parallel-flow assumption, on which this solution is
based, will fail, very much as in YY.

We conclude that in the case of change-of-type behaviour, the hyperbolic analysis
can correctly capture the features of the displacement, provided that initial and
boundary conditions are such that the elliptic region is not crossed, and that the
solution in the hyperbolic region is a rarefaction. When the former is not possible,
the addition of a small amount of diffusion is not sufficient to prevent unstable
behaviour, which will set inside the elliptic region. When shocks develop, they appear
to be non-classical. The addition of diffusion simply allows us to bypass the elliptic
region but it does not address the issue of crossing it. The following section will
address this issue.

Before we proceed, we will use the insight obtained from the R1 problem to
extrapolate to the more conventional R2 problem (injection at G, initial at W). In
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Figure 8. The numerical solution of Riemann problem R1 based on the parallel-flow
approximation for the conditions corresponding to figure 7, and with a small amount of
diffusion added, NTDε2 = 2.4 × 10−4. Bold curves correspond to the numerical simulations, all
others to the analytical solution. Clockwise from top left are composition paths, saturation
profiles, transversely averaged concentration and phase (finger) boundaries, plotted as functions
of the convective similarity variable x/t . At this level of diffusion, the solution path enters
the elliptic region, leading to unstable, oscillatory behaviour. However, the leading part of the
solution is a shock, around which the parallel-flow approximation fails, thus invalidating the
physical relevance of this solution.

theory, the solution path of the problem in the complete absence of diffusion should
be simply the GW axis, namely the Poiseuille profile, as in the case of passive tracer
injection. However, the presence of even a small amount of diffusion will introduce
a layer of different mobility in-between the two equal mobility fluids. Results from
numerical simulations for the hyperbolic case are shown in figure 11. Because of
diffusion, the injection state moves from apex G to a point on the OG axis, while
the initial state moves from the W apex to a point to its left on the OW axis.
The solution path is a combination of rarefaction waves, along composition paths
augmented by diffusion, but otherwise stays close to the Poiseuille profile. Figure 12
shows results corresponding to the mixed-type case. As in the corresponding R1
problem, the numerical solution is based on the parallel-flow approximation with
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Figure 9. Consecutive snapshots of the concentration field across the gap, plotted as functions
of the distance x, corresponding to the conditions of figure 8 and obtained from the numerical
simulations. The region near the tip, where elliptic behaviour develops, shows unstable,
oscillatory and unphysical behaviour. The small feature ahead of the front is an artefact
of the simulation owing to the use of a modified initial condition.

small diffusion added. We note that as in Riemann problem R1, when the solution
paths enter the elliptic region, they become subject to an instability, resulting into
unphysical oscillations.

Similar considerations apply for cases II and III discussed above.

4.2. Crossing the elliptic region

The above suggest that the only alternative to understanding the displacement when
crossing the elliptic region (and more generally when a shock is predicted) is to
conduct simulations of the full problem. Indeed, the breakdown of the parallel-flow
approximation in these regions signals that additional physics must be inserted.
We noted that in the corresponding problems of van der Waals gas dynamics and
elastodynamics, this is done by the addition of an effective capillary term, which
introduces a third-order derivative to the right-hand side of (1) (e.g. see LeFloch
2002). Here, it will be done exactly, by considering the full problem and using LBGK
simulations.

Comparison between analytical and numerical solutions of the full problem for the
genuinely hyperbolic case is shown in figure 13. Plotted are the solution paths in
the triangular composition diagram, the saturation profiles (Sg and So) and the fluid
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Figure 10. The numerical solution of Riemann problem R1 based on the parallel-flow
approximation for the conditions corresponding to figure 7, and with a larger amount of
diffusion added, NTDε2 = 1.2 × 10−3. Bold curves correspond to the numerical simulations, all
others to the analytical solution. Clockwise from top left are composition paths, saturation
profiles, transversely averaged concentration and phase (finger) boundaries, plotted as functions
of the convective similarity variable x/t . At this level of diffusion, the solution path does not
enter the elliptic region.

boundaries as functions of the similarity variable x/t . Because the problem is genuinely
hyperbolic and the slow eigenvalue increases monotonically in the direction from
injection to initial, the analytical solution lies on the λ− path AB, as noted previously.
Comparison of analytical and simulation results shows a generally good agreement,
except near the tip, where a more elaborate structure appears in the numerical solution.
Nonetheless, the velocity of the tip is predicted well and it is close to the maximum
Poiseuille velocity of 3/2. The presence of diffusion in the numerical model results
in the spreading of the rarefaction wave, as before. Thus, although the analytical
solution is a sole function of the similarity variable x/t , the numerical solution is
additionally a function of time. We must note that several transients exist before the
asymptotic state of figure 5 is reached. In fact, the asymptotic state is an intermediate
one, as at long times diffusion ultimately breaks the convective similarity scaling. Also
because of diffusion, the path in the composition space shifts, and the layer of the
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Figure 11. The numerical solution of Riemann problem R2 based on the parallel-flow
approximation for the conditions corresponding to figure 5, with NTDε2 = 3.1 × 10−5. Clockwise
from top left are composition paths, saturation profiles, transversely averaged concentration
and phase (finger) boundaries, plotted as functions of the convective similarity variable x/t .
Because of diffusion, the injection state moves from the apex G to a point on the OG axis,
while the initial state moves from the W apex to a point to its left, on the OW axis. The
solution is a combination of rarefaction waves along composition paths, but it is close to the
Poiseuille profile.

in-between fluid has now a non-zero thickness (as in figure 6). Overall, however, the
agreement between numerical and analytical solutions is quite good, showing that the
hyperbolic formalism and the parallel-flow assumption are valid approaches in this
case.

Figure 14 shows the comparison for the mixed-type case. The numerical results in
the figure correspond to an intermediate asymptotic state that is reached after some
transients have stabilized. The transient development is shown in the four consecutive
snapshots of figures 15–17, where the concentration field vs. the actual distance
(figure 15), the paths in the triangular diagram (figure 16), and the saturation profiles
plotted vs. the similarity variable (figure 17) are shown. The following features are
noted, and were also observed in other simulations with different parameters:
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Figure 12. The numerical solution of Riemann problem R2 based on the parallel-flow
approximation for the conditions corresponding to figure 7, with NTDε2 = 2.4 × 10−4. Clockwise
from top left are composition paths, saturation profiles, transversely averaged concentration
and phase (finger) boundaries, plotted as functions of the convective similarity variable x/t .
At this level of diffusion, the solution path enters the elliptic region and leads to unstable,
oscillatory and unphysical behaviour.

(i) Owing to diffusion, the initial condition rapidly moves to the left of the apex W
to point F (figure 14). This point corresponds to about 10% volume fraction of fluid
o and remains fixed throughout the process. It is the leading edge of the front and it
moves with a velocity slightly larger than the Poiseuille velocity of 3/2. The velocity
appears to be consistent with the shock velocity that would have been obtained in
the two-fluid problem with M = 10, and states F and W, respectively. That velocity is
also slightly larger than the Poiseuille maximum.

(ii) Upstream, the trajectory follows roughly the solution path FE of an almost
constant velocity (figure 14), where the volume fraction of fluid o decreases to an
almost constant value, at point E. The velocity is approximately the same as the
slowest eigenvalue in the lower lobe where the hyperbolic formalism applies. It
appears as if points E and F were selected such that the velocity on FE is the same as
the shock velocity FW. If so, that would be consistent with a quasi-linear hyperbolic
formalism.



126 M. Shariati and others

O W

A

B

G

0 1 2

1

Sg

x/t

0 1 2

1

G

O

W

x/t

0 1 2

1

So

x/t

Figure 13. Solution of Riemann problem R1 for the conditions of figure 5 (M = 1, Λm = 0.1,
genuinely hyperbolic case, with small diffusion, NTDε2 = 1.5 × 10−5). Comparison between
analytical and numerical solutions using the full Navier–Stokes equation. Bold lines correspond
to the numerical solutions. Clockwise from top left are composition paths, saturation profiles
Sg and So and phase (finger) boundaries, plotted as functions of the convective similarity
variable x/t .

(iii) The system then locks into a path ED inside the elliptic region. Along this
path, the volume fraction of fluid o remains constant, but that of fluid g increases in
the upstream direction until a maximum value is reached. During this process, the
finger of the latter fluid swells, the swelling increasing until the state is reached. Sta-
ges 2 and 3 are at the leading edge of the front, where cross-flow becomes important.
None of the features in these regions is predictable with the quasi-linear formalism.

(iv) State D is connected upstream with point B, outside the elliptic region,
apparently through a shock, moving along paths of the fast eigenvalue with a
shock velocity consistent with the Rankine–Hugoniot conditions. Along this path, the
volume fraction of fluid g decreases upstream, while that of fluid o increases.

(v) Finally, state B is connected further upstream to the injection state. The path
follows nicely the quasi-linear formalism. In the development of this state, there
appears to be a reversal along the hyperbolic path AB. According to the classical
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Figure 14. Solution of Riemann problem R1 for the conditions of figure 7 (M =1,Λm = 10,
mixed-type behaviour, with small diffusion, NTDε2 = 1.5 × 10−5). Comparison between
analytical and numerical solutions using the full Navier–Stokes equation. Bold lines correspond
to the numerical solutions. Clockwise from top left are triangular composition paths, gas
saturation profiles and oil and a snapshot of the numerical profiles across the gap, plotted as
functions of the convective similarity variable x/t .

theory, such a reversal should be accompanied by a shock, which must travel with
a velocity smaller than that of point A. We suspect, however, that this feature is
associated with weak inertia, which exists in the LBGK simulations, and the resulting
instability at small Reynolds numbers.

The behaviour of the full solution as the elliptic region is crossed cannot be captured
by the simpler quasi-linear hyperbolic system, even if a small amount of diffusion were
to be added. As the simulations show, the elliptic region develops precisely at the tip of
the displacement, where the variables undergo sharp changes, and where the parallel-
flow assumption itself breaks down. The discrepancy in the velocity component in
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Figure 15. Consecutive snapshots of the concentration field across the gap, plotted as
functions of the distance x, corresponding to the conditions of figure 14 and obtained from
the numerical simulations.

the direction of the displacement between the full simulation and the parallel flow
expressions (8)–(9) is shown in figure 18. Considerable differences exist near the tip
(and also near the end points in the simulation domain). Just as in YY, the quasi-
linear hyperbolic formalism can reproduce well the features of the ‘three-fluid’ problem
upstream of the tip. However, also as in YY, it fails to capture the tip structure and the
velocity of the shock, the resolution of which requires that more detailed physics are
included in the description. We are led to conclude, therefore, that the emergence of a
mixed-type region is a warning of the local failure of the parallel-flow approximation,
which was fundamental for the development of the quasi-linear hyperbolic formalism.
Resolving the problem that arises cannot be done simply by using different fractional
flow expressions, which will lead to a genuine hyperbolicity, but rather necessitates
the solution of the full higher-dimensional problem in that region. In the analogous
problems in the dynamics of real fluids, where similar elliptic behaviour is encountered,
the resolution in the elliptic region is obtained by introducing an effective capillary
term, which results into a nonlinear eigenvalue problem for the determination of the
velocity of the shock (which is, thus, a non-classical shock, see LeFloch 2002). Whether
or not such a simple approach can also be applied to our problem is currently an open
question.

5. Conclusions
In this paper, we considered the solution of a model problem of miscible

displacement between parallel plates in the absence of diffusion. By selecting a
piecewise representation in the mobility–concentration dependence, the problem can
also be considered as ‘three-fluid’ flow in the absence of capillarity. Assuming a
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Figure 16. Consecutive snapshots in the triangular composition diagram of the solution
corresponding to the conditions of figure 14 and obtained from the numerical simulations.

symmetric profile in the gap and based on a lubrication-type approximation, the
mathematical description was formulated in terms of a set of two quasi-linear
hyperbolic equations. Parallel flow is necessary for the consistency of the quasi-linear
hyperbolic formalism at steady-state and represents the equivalent of the equilibrium
approximation in other contexts.

We used this model to study the development of a mixed-type behaviour, namely
of an elliptic region in the composition space. The system is hyperbolic and can be
studied analytically, when the mobility profile is monotonic, or when the mobility
of the middle phase is smaller than its neighbours. When the latter mobility is
larger, a change of type is displayed and an elliptic region develops at the tip of
the displacement. We studied analytically and numerically the conditions for the
appearance of this behaviour.

Subsequently, the solution of typical Riemann problems was considered. Numerical
solutions of the problem, under the parallel-flow assumption, but with small diffusion,
based on lattice BGK simulations, were also obtained. Good agreement was found
in the case where the solution is a rarefaction. When mixed-type behaviour develops,
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Figure 17. Consecutive snapshots of the volume fraction (saturation) profiles plotted as
functions of the convective similarity variable x/t , corresponding to the conditions of figure 14
and obtained from the numerical simulations.
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Figure 18. A snapshot of the difference between the actual values, obtained from the full
simulation, and the lubrication (parallel flow) approximation expressions (8)–(9), of the velocity
component in the direction of the displacement, for the conditions corresponding to figure 14.
Significant discrepancies exist near the tip (as well as near endpoints of the simulation).
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and diffusion is not strong enough, the solution path is forced to cross the elliptic
region, and the solution becomes unstable, leading to unphysical oscillations. For the
Riemann problems considered, the elliptic region arises precisely at the displacement
front, where the parallel-flow approximation, underlying the quasi-linear hyperbolic
formalism, fails. Crossing this region requires use of the full higher-dimensional model.
The resulting structure at the tip cannot be captured by the quasi-linear hyperbolic
formalism, regardless of the selection of the fractional flow expressions or the addition
of regularizing diffusion. Rather, it necessitates incorporation of additional physics,
which in the present paper were included by considering the higher-dimensional
model. The solution obtained essentially corresponds to a non-linear eigenvalue
problem for the shock velocity, and it is analogous to the non-classical shocks used
for the resolution of corresponding problems in other contexts (e.g. see LeFloch 2002).

Our study shows that physically acceptable models can lead to change-of-type
behaviour. Models are, therefore, not to be rejected, because they show the existence
of an elliptic region. Rather, the emergence of a mixed-type region in such problems is
a warning of the local failure of the equilibrium approximation, which in our context
is the parallel-flow approximation, and which is fundamental for the development of
the quasi-linear hyperbolic formalism in the first place. Crossing the elliptic region
must be done by accounting for additional physics in that region. In the present paper,
this necessitated consideration of the higher-dimensional model. Whether or not it is
possible to simplify the description, for example, in terms of an equivalent capillary
term, is currently under investigation. It is also worth noting that the appearance
of a shock, the tip of which exceeded the maximum Poiseuille tip velocity of 3/2,
was associated in Lajeunesse et al. (1999) with the onset of instability in the third
direction in the Hele-Shaw geometry (e.g. that which is perpendicular to the plane of
the paper in figure 1). Whether or not this is also the case in the present problem
when an elliptic region develops remains to be determined.

We close by adding that the parallel-flow approximation is also likely to fail in
shocks, for example in the two-fluid problem of YY, or for appropriate Riemann
problems in the hyperbolic region in the present three-fluid problem. Such shocks
appear to be non-classical, and their resolution requires the consideration of additional
physics and of an eigenvalue problem, much like that for crossing the elliptic region.
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